Material Passports SEDA Meeting of Minds 02.09.2022 | 1 | Group Element | Element | Description | Material Arising | | | SW 8 | li e | Total Control | 16 | Cost to remove/process | | | Cos | - avoided impacts | Carbon - avoided impacts | | | | | |----------|----------------|---|--|------------------|------|--------------------|---|--|----------------|----|------------------------|---|---|----------------|--|--------------------------|--------------------|---------------|---------|---| | Item Ref | | | | Qty | Unit | %ge
recoverable | Waste Recovery
Commentary | Waste Route Commentary | Waste
Route | | Sum | Comments | | Sum
or new) | Comments | Carbon
(kgCO2e/t) | Carbon
(kgCO2e) | Cart
(£/tC | | Comments | | 111 | Substructure | Strip foundations | In situ concrete formed
with rebar cages | 96 | m3 | 100% | Grub up and crush to
provide aggregate
elsewhere. Assume stored
on site. | Aggregate for use as back-fill.
Re-bar may be an issue. | 3 | £ | 19,200 | Rate for labour items,
assumed crusher brought
onto site (see preliminaries) | £ | 2,880 | Meterial only; excludes movement around site | 103 | 23,731 | £ | | General average embodied carbon rate applied to Concrete embodied carbon = 103kgCO2 x mass (f) Reber weight factor = 0.100t of reber per m* concrete. 648 x 0.1 = 64.8t Reber embodied carbon = 1200kgCO2/t = 77,760kgCO2 | | 11.2 | Substructure | Ground floor slab | In-situ RC slabs poured
between ground beams. | 135 | m3 | 100% | Grub up and crush to
provide aggregate
elsewhere. Assume stored
on site. | Aggregate for use as back-fill.
Re-bar may be an issue. | 3 | £ | 27,000 | Rate for labour items,
assumed crusher brought
onto site (see preliminaries) | £ | 4,050 | Material only; excludes movement around site | 103 | 33,372 | £ | | Concrete embodied carbon =
103kgCO2 x mass (T)
Reber weight = 27t
Reber embodied carbon =
32,400kgCO2 | | 1.1.3 | Substructure | Damp-proofing/tanking | Assume a slurry beneath the slab and founds. | 225 | mZ | 0% | Assume unrecoverable. | | 4 | £ | 58 | Assumed strip out and dispose | £ | 5 5 | | | 2.5% | £ | 7.50 | | | 11.4 | Substructure | Sack-fill/hardcore | Assume graded and
compacted hardcore
backfill beneath
slab/foundations. | 259 | m3 | 100% | Assume dug up, washed and graded. | Sold or set eside for re-use. | 3 | £ | 12,960 | Assumed reused on the
same site, or collected by
buyer if sold | £ | 7,776 | Material only; excludes
movement around site | 7.5 | 2,916 | £ | 108 | General UK aggregate mix | | 2.1.3 | Superstructure | Upper floor slabs | Pre-cast concrete slabs
fixed to loadbearing
panels. | 405 | m3 | 100% | Cut re-bar connection to
surrounding structure. Make
good cut ends to prevent
corrosion. | Use as sub-base for new external paved areas. | 1 | E | 101,250 | Assumes broken down into
easily manoeuvrable
component sizes | £ | 40,500 | Material only; excludes
movement around site | 103 | 100,116 | £ | | Concrete embodied carbon =
103kgCO2 x mass {T}
Rebar weight = 3.7t
Rebar embodied carbon =
4.440kgCO2 | | 214 | Superstructure | Loadbearing internal walls | Pre-cast Mitchell Camus
panels. | 287 | m3 | 100% | Cut re-bar connection to
surrounding structure. Make
good cut ends to prevent
corrosion. | Aggregate for use as back-fill.
Re-bar may be an issue. | 3 | £ | 71,712 | Assumes broken down into
easily manoeuvrable
component sizes | £ | 28,685 | Material only; excludes movement around site | 136 | 93,627 | £ | | Assumed RC in situ 28/33 Mpa concrete used Concrete embodied carbon = 136 x mass (T) Rebar CO2 = 95.640kgCO2 | | 2.1.5 | Superstructure | External walls - original
ground floor | Pre-cast concrete Mitchell
Camus system. | 474 | m2 | 100% | Cut connections to the frame
and treat all exposed steel
leaving ready for re-use
elsewhere. | U values don't meet modern construction without additional insulation. However no reason these panels should not be used on new buildings as part of a broader system. | 1 | £ | 18,960 | Assumes fixings are in good
condition and can be reused
without any repair work | £ | 47,400 | Based on precast wall
panels; dependent on
specification; excludes costs
associated with fitting old
system vs new | 136 | 23,207 | Ē | 860 | Assumed RC in situ 28/33
Mps concrete used
Concrete embodied carbon =
136 x mass (T) | | 2.1.6 | Superstructure | External walls - original
upper floors | Pre-cast concrete Mitchell
Camus system. | 1422 | m2 | 100% | Cut connections to the frame
and treat all exposed steel
leaving ready for re-use | U values don't meet modern
construction without
additional insulation. | 1 | £ | 56,880 | Assumes fixings are in good
condition and can be reused
without any repair work | £ | 142,200 | Based on precast wall
panels; dependent on
specification; excludes costs | 178 | 91,122 | £ | 2000000 | Precast concrete embodied
cerbon = 178kgCO2 x mass
(T) | The Circle 5.200 54,000